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Finite-Memory Universal Prediction of
Individual Sequences
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Abstract—The problem of predicting the next outcome of an
individual binary sequence under the constraint that the universal
predictor has a finite memory, is explored. In this analysis, the
finite-memory universal predictors are either deterministic or
random time-invariant finite-state (FS) machines with states
( -state machines). The paper provides bounds on the asymptotic
achievable regret of these constrained universal predictors as
a function of , the number of their states, for long enough
sequences. The specific results are as follows. When the universal
predictors are deterministic machines, the comparison class
consists of constant predictors, and prediction is with respect to
the 0–1 loss function (Hamming distance), we get tight bounds
indicating that the optimal asymptotic regret is 1 (2 ). In that
case of -state deterministic universal predictors, the constant
predictors comparison class, but prediction is with respect to the
self-information (code length) and the square-error loss functions,
we show an upper bound on the regret (coding redundancy) of
( 2 3) and a lower bound of �( 4 5). For these loss

functions, if the predictor is allowed to be a random -state
machine, i.e., a machine with random state transitions, we get
a lower bound of � 1 on the regret, with a matching upper
bound of 1 for the square-error loss, and an upper bound of

log 1 for the self-information loss. In addition, we provide
results for all these loss functions in the case where the comparison
class consists of all predictors that are order- Markov machines.

Index Terms—Exponentially decaying memory, finite-state (FS)
machines, FS prediction, imaginary sliding window, saturated
counter (SC), universal coding, universal prediction.

I. INTRODUCTION

UNIVERSAL prediction and universal coding is a mature
subject nowadays (see, e.g., [14] for an extensive survey).

The important results are widely known, demonstrating the
often surprising phenomena that it is possible to universally
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predict (or compress) data generated by an unknown source,
or even an individual deterministic data sequence and attain
optimal asymptotic performance. The universal prediction
problem can be considered in both a probabilistic and a de-
terministic setting. In the probabilistic setting of the problem,
it is assumed that the data is generated by some (unknown)
probabilistic source. If the source were known, one could
design an optimal (nonuniversal) predictor that would mini-
mize the expected prediction loss for that source. Interestingly,
universal prediction theory has shown that one can construct
a single universal predictor that can work well for all sources,
i.e., attain asymptotically the same expected average loss as
the optimal predictor tuned to the source. The existence of a
universal predictor requires that the unknown source belongs
to a constrained enough class of sources. Also, the rate of
convergence depends on richness of that class. Yet, at least
for weak convergence, this class can be all finite-alphabet
stationary and ergodic sources, see [10], [18].

In the deterministic setting of the universal prediction
problem the data is an arbitrary individual sequence. If the
data sequence is known upfront, one can choose the best
predictor from some constrained class of predictors that min-
imizes the prediction loss for that sequence. This predictor is
nonuniversal, as it is designed based on the given sequence.
Interestingly, as was shown by universal prediction theory,
there exists a single universal predictor whose performance for
any sequence is asymptotically the same as the performance
of the (nonuniversal) predictor tuned to that sequence. The
existence of such universal predictor requires that the class of
predictors from which this nonuniversal predictor is chosen is
constrained enough. As above, the convergence rate depends
on the richness of that class. Yet this class can be large, e.g., all
finite-state machines, see [6].

In a further examination of the universal predictors that attain
the optimal performance, it turns out that these predictors, while
universal and nonanticipating, are much more complex than the
predictors or the class of sources whose performance they attain.
For example, optimal universal prediction and universal coding
of binary sequences for memoryless sources, or predictors that
compete with the class of constant predictors (there is a duality
between these two problems, see [14]) must maintain the empir-
ical count of zeros and ones observed so far in the sequence. This
requires that the universal predictor will have a growing number
of states (roughly , where is the data size) and all this com-
plexity is required to compete with a constant single-state pre-
dictor!

Following this observation, a natural question arises. What is
the best that can be done if the universal predictor has limited
resources? For this we consider the case where the universal
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predictor has a finite number of states and is time invariant for
most cases. This restriction is motivated by two main reasons:
The first is a notion of “fair play.” In the deterministic setting
we consider the comparison classes of the constant (single-state)
predictors, Markov predictors, and finite-state (FS) predictors
with a limited number of states. Thus, it is only fair to use fi-
nite-memory universal predictor. In this game, the nonuniversal
player has the advantage of knowing the sequence and picking
the most suitable predictor for it from the reference class, while
the universal player, that must pick the same predictor for all
sequences has the advantage of having more states (but not in-
finitely more). The second reason is a practical one. Considering
different loss functions, universal prediction results apply to
problems such as branch prediction [5], page prefetching [22],
gambling and portfolio selection [4], universal data compres-
sion [23], and so on. In some of these applications memory size
and the number of computations are very costly.

In this paper, we thus consider the case where the universal
predictor is constrained to be a FS machine; actually, it is either a

-state, time-invariant, deterministic finite-state (TIDFS) ma-
chine or a randomized -state time-invariant machine. There
are previous results for this problem in the probabilistic setting
([17], [7]). In this paper, however, we focus on the determin-
istic setting. We explore the performance of the -state uni-
versal predictor as compared with the performance of the best
predictor in the comparison class, for long enough sequences,
in terms of the number of states . We consider prediction with
the – (Hamming) loss, the self-information loss (essentially
the coding problem), and the square-error loss (least square pre-
diction). The main findings are as follows.

1) For the – loss and the comparison class of constant pre-
dictors, we construct a TIDFS machine, the linear output
saturated counter (LOSC), whose extra loss is .
We also show a lower bound of for the extra loss
indicating that this is the optimal achievable asymptotic
expected regret (AER).

2) For the self-information and square-error loss and the
comparison class of constant predictors (coders or esti-
mators), we construct a TIDFS machine whose extra loss
(coding redundancy) is . We then show a lower
bound for TIDFS machines of . While the op-
timal performance for TIDFS machines is still unknown,
we conjecture that is optimal. In any case,
these results show that constrained universal coding be-
haves differently in the deterministic and the probabilistic
settings (this is not true for the unconstrained case).

3) For the problems of coding and least-square predicting
using random -state machines, we consider the “imagi-
nary sliding-window” (ISW) machine, which is a known,
interesting, random machine proposed, e.g., in [12], [20].
We show that the ISW machine obtains a least square re-
gret of (which is optimal) and a coding redundancy
which is at most .

4) We provide results for all considered loss functions in the
case where the comparison class consists of the order-
Markov machines, and the class of -state machines.

In Section II, we present definition and notations including
the explicit definition of FS and Markov predictors. Then, in
Section III, we briefly present the previous results in the proba-
bilistic setting that were not widely published so far. The novel
results in the deterministic setting on the – loss are given in
Section IV, while the results on the self-information and the
square-error loss are covered in Section V. The paper is sum-
marized, and further research is suggested, in Section VI.

II. DEFINITIONS AND NOTATION

In this section, we set the notation and briefly describe pre-
diction and universal prediction of binary sequences. We define
the term “regret” used extensively in the paper and provide an
explicit definition of FS predictors.

Throughout the paper, a predictor is a machine that receives
a binary sequence and at each time instant , after
having seen it predicts the next out-
come . This prediction, denoted , can be determin-
istic or random. There is a loss function associated
with and the actual outcome , where natural measures are
the – loss, i.e., a zero loss for correct prediction and a unit
loss for an error, and the square-error measure. More generally,
the predictor can assign probabilities (“soft decision”) to the two
possible values of the next outcome, making the prediction

a conditional probability assignment for given
. In an important case, upon observing , the perfor-

mance of is assessed by the self-information loss
, also referred to as the log-loss function in the

machine-learning literature. In this case, the universal predic-
tion problem essentially becomes the universal source coding
problem.

The accumulated loss of a predictor along a sequence is
given by

where the expectation here is due to possible randomization in
the predictor.

In the probabilistic setting of the prediction problem, it is as-
sumed that the sequence is generated by a stochastic
source. If the source is known, one can find the best predictor

that attains , where the expectation here
is over the random data using the source distribution. This is a
nonuniversal predictor, as it depends on the source distribution.
Universal prediction in the probabilistic setting considers the
case where the source is unknown. In many cases, this source
is of a known type with unknown parameters , e.g., a
Bernoulli source with unknown. To get a universal pre-
dictor we look for a single predictor whose performance is
as close as possible to the performance of the nonuniversal pre-
dictor, tuned to the specific source, for all possible sources. We
define the expected regret associated with as
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where again the expectation here is due to the random data,
using the true source probability. Note that is the same for
all possible but is chosen differently for each .
When the loss function is the self-information loss, the regret is
called coding redundancy or simply redundancy. Since we look
for that works well for all sources, the goal is to find for
which is as small as possible, desirably vanishing for
large . In many cases, depending on the class , such a goal is
possible.

In the deterministic setting of the prediction problem there
is no assumption of a probabilistic data-generating mechanism
and the predicted sequence is simply an arbitrary individual se-
quence. Let be a restricted class of predictors, e.g., can
be the class of single-state predictors or the class of predictors
that can be realized by FS machines of a bounded order (an ex-
plicit definition of FS predictors is provided later). For a given
sequence , let be the predictor from the class

that minimizes . Clearly, this is not universal as it
depends on the sequence . As above, we denote by the uni-
versal predictor, and we define the regret in this case as

which essentially defines by how much the performance of
deviates, in the worst case, from the performance of the pre-
dictor that is tuned to the sequence. Since we look for a single

that works well for all possible sequences, the goal is to find
for which is as small as possible, desirably vanishing

for large . In many cases, depending on the class , such a
goal is possible.

The existence, the structure, and other properties of universal
predictors in both settings were mostly obtained by the well-
established universal prediction theory. This paper explores the
case where the universal predictors are constrained to be FS
machines. As noted above, FS predictors and Markov predictors
are also used as a reference class in many occasions. For this we
now provide an explicit definition of these machines.

An FS machine with states, i.e., a -state machine, is de-
fined by an initial state and a state transition function

where is the binary input, is the machine state at time ,
and takes values in the finite set . The prediction
rule , defined above, is solely governed by the current state, i.e.,

In most of the paper , reflecting the prediction prob-
ability that the next outcome is “ ,” or the probability as-
signed to the event that the next outcome is “ .” In our bi-
nary case we then have for the – loss (i.e.,

if and if ). For the
self-information loss, we have when ,
and for . For the square-error loss,

.
A deterministic FS predictor is a predictor as above where

the function is deterministic. Note that we allow deter-
ministic machines to make randomized predictions as long as

the state transitions are deterministic (for the – loss, we es-
sentially assume that the predictor randomly predicts “ ,” with
probability ). We also consider in the paper randomized FS pre-
dictors where the function is stochastic. In most of the
paper we also assume that and are independent of the time
index , and therefore the corresponding predictors are time in-
variant.

An important special class of FS machines is the class of
order- Markov machines. In these machines, the current state

is determined by the previous input symbols, i.e.,
. For binary sequences, these machines have

states, and in general they have an important feature
that the state is observable from the input sequence.

The regret of a -state predictor in the probabilistic set-
ting is given by

(1)

where as above the expectation is over the random data, using
the true source probability. The regret of in the deterministic
setting is given by

(2)

This paper is concerned with the performance of the -state
universal predictor as a function of the number of its states .
Thus, we will generally be interested to examine the behavior
of AER

(3)

We use since the sequence is arbitrary, but we show
later that for deterministic -state predictors the limit with re-
spect to always exists. As noted earlier, we will be interested
in the behavior of as a function of ; actually, we will
mostly investigate its limiting dependence on .

III. PREVIOUS RESULTS IN THE PROBABILISTIC SETTING

In this section, we briefly describe the main results of [7] and
[17] which consider universal FS predictors in the probabilistic
setting, without the proofs and the detailed analysis. The reader
is referred to [7], [5], [17], [16] for further consideration.

A. The – Loss

In the probabilistic setting, it is assumed that the data to be
predicted is generated by a stochastic source with unknown pa-
rameters. In our case, the observed binary sequence is generated
by an unknown Bernoulli source. The optimal nonuniversal
predictor would always predict “ ” if and always pre-
dicts “ ” otherwise, yielding an average of
errors for a sequence of length . Thus, the AER in this case is

(4)

where denotes the number of errors made by
over the sequence and is equal to for the – loss
function.



MERON AND FEDER: FINITE-MEMORY UNIVERSAL PREDICTION OF INDIVIDUAL SEQUENCES 1509

Fig. 1. The four-state SC with a threshold. Solid/dotted lines correspond to transitions generated by “1=0.”

In [9], it was essentially proved that the AER for this problem
(assuming ) has the following lower bound for all possible

-state predictors:

(5)

A candidate predictor to attain the optimal performance is the
saturated counter (SC) with a threshold. This predictor was pro-
posed and analyzed in [7]. As depicted in Fig. 1, this predictor is
composed of a linear array of states, where only adjacent states
are connected. The counter is increased/decreased (unless a sat-
urated state is currently occupied) every time a is encoun-
tered. It predicts that the next bit will be a “ ” if one of the top
half states is occupied and “ ” otherwise. As shown in [7], it
achieves an AER of

(6)

The work [7] further considers the case of Markov sources,
tree sources, and FS sources.

B. The Self-Information Loss

The optimal nonuniversal predictor for the self-information
loss, in the probabilistic setting, simply assigns to the next out-
come the true source probability distribution .
By doing so the accumulated expected loss is the source en-
tropy. Thus, if the binary sequence is generated by an unknown
Bernoulli source, the optimal nonuniversal predictor (source
coder) is constant and assigns at each time instant the probability

, thereby achieving the optimal expected code length of
bits per sample, where is the binary entropy func-

tion.
There are many known universal coders that attain the entropy

of an unknown Bernoulli source (note the classical work [3]).
However, it is interesting to find a universal predictor that
is a -state machine minimizing

(7)

The basic observation made in [17] asserts that a -state ma-
chine can record at most different probability assignments
at any time instant. Consider the Bernoulli case, and sup-
pose that eventually the machine estimates the probability as-
signment to be instead of the real value . This leads to an

additional code length of bits per sample over the en-
tropy, where

is the information divergence. Thus, a basic question that arises
is how to quantize optimally the probability axis and to
allocate these quantized probabilities to the states. This is a
quantization problem with respect to the divergence metric. It
turns out that by using a nonuniform grid induced by Jeffreys’
prior and for large , the points can be chosen so
that

(8)

Clearly, the divergence associated with the best quantizer is a
lower bound on the performance of any -state universal coder.
Using this quantization, a -state time-variant machine was
constructed in [17], achieving a coding redundancy of ,
thus being optimal. In this respect, we note that a quantizing
problem with respect to (w.r.t.) the divergence was also treated,
in a different context, in [13].

As for time-invariant predictors, one can use Pinsker’s lemma
asserting

(9)

and the results in [12] to get a lower bound for the coding re-
dundancy. Specifically, in [12] it was shown that no universal

-state time-invariant machine can achieve a probability esti-
mation whose mean square error with respect to the true proba-
bility is smaller than for all Bernoulli sources.

A randomized machine that achieves this bound was also dis-
cussed in [12]. This machine uses only states to estimate the
number of ones in a sliding window of length , and can be
interpreted as an “imaginary sliding window” (see [20]). This
machine, called ISW in the sequel, has much of the merits of
a true sliding window, see [20]. Following this, it was proved
in [17] that when the randomized -state ISW machine is used
for universal coding, it attains a coding redundancy of .
Following [12], it was also shown in [17] that this machine can
be derandomized to construct a deterministic -state machine
achieving a coding redundancy of .

It turns out, as will be further analyzed in Section V, that the
ISW also performs well at the deterministic setting.
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IV. FINITE MEMORY UNIVERSAL PREDICTION OF INDIVIDUAL

SEQUENCES FOR THE – LOSS

We turn now to present the novel results of this paper and
begin with results on universal -state prediction of individual
sequences w.r.t. the – loss. We first re-examine the basic result
for unconstrained universal prediction w.r.t. the – loss derived
in [6] and suggest a new way to obtain a universal predictor for
this setting. We then consider universal prediction using -state
TIDFS machines, where the comparison class is the class of
constant predictors. We introduce the LOSC and analyze its
performance. A new lower bound is proved which shows that
the LOSC is the optimal TIDFS machine for this task. Finally,
we generalize the results for the comparison class of -order
Markov machines and general -state machines.

A. Unconstrained Universal Prediction—Revisited

In the – loss problem the class of constant predictors
contains essentially two predictors—one that predicts “ ” with
probability one and another that predicts “ ” with probability
one, as the other predictors are poorer. Therefore, the AER

(10)

where and are the number of zeros and ones in the se-
quence and is defined as in Section III. In [6], [8], uni-
versal predictors with have been shown. Further-
more, for these predictors, , which is the
optimal convergence rate proved by Cover in [1]. The predictor
in [6] keeps a count of the number of zeros and the number
of ones up to the present time , then predicts that the next

bit will be a “ ” with probability , where

(11)

and where . As frequently noted in earlier

work, the universal predictor must produce randomized predic-
tions, so that an adversary that knows the predictor cannot gen-
erate a sequence on which the predictor always errs.

We now provide another predictor with a different way to
assign prediction probabilities. Let

Having observed this predictor predicts that the next out-
come is “ ” with probability . This probability as-
signment has an intuitive information “weighted mixture” in-
terpretation (see Fig. 2).

It can be proved, following the technique in [6], that this pre-
dictor also yields a regret of . The intuitive
structure of this predictor may prove to be useful for other set-
tings as well; however, this is left for further research.

Notice that the predictor of [6] and the newly suggested pre-
dictor both have a growing number of states (roughly ). This
leads to the main question of the paper; what happens when the
universal predictor is constrained to have only states?

Fig. 2. The predictor in [6] and the weighted mixture predictor.

B. The Linear Output Saturated Counter (LOSC)

We turn now indeed to deal with this question, which is the
main subject of the paper. For the – loss, we focus on the case
where this machine is a -state universal TIDFS machine. The
reference class is the class of constant predictors. We introduce
the LOSC predictor and analyze its performance. We then prove
a lower bound on the performance of any TIDFS predictor as a
function of the number of states . It turns out that no TIDFS
can do better than which is also the asymptotic perfor-
mance of the LOSC predictor.

The -state LOSC is composed of a linear array of states,
where only adjacent states are connected. The counter is in-
creased/decreased (unless a saturated state is currently occu-
pied) every time a “ ” is encountered. The LOSC produces
randomized predictions—when it occupies the th state it pre-
dicts that the next bit will be a “ ” with probability

The LOSC is schematically described in Fig. 3.
Before analyzing the performance of LOSC, we follow [17]

and describe a method to find the worst sequence for a given
deterministic FS machine.

A deterministic FS machine corresponds to a directed graph
where the different states are the vertices and the transitions cor-
respond to edges. Given a certain deterministic FS predictor,
each possible binary sequence corresponds to a certain path
on its state graph. Define a minimal cycle as a cyclical -ele-
ment, ordered set of states and input bits

such that , and

Given a minimal cycle , let
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Fig. 3. The LOSC (four states) for the deterministic setting. Solid/dotted lines correspond to transitions generated by “1=0.”

Fig. 4. A state graph consistent with the state sequence below.

be the – prediction loss obtained by the optimal constant pre-
dictor on the cycle sequence. Let

be the expected number of correct predictions when the machine
occupies state and the input bit is . Thus, the performance
obtained by the universal predictor on the cycle sequence is

(12)

The cycle regret is

Lemma 1: Every path on a state graph of a -state deter-
ministic FS machine can be broken into minimal cycles and a
cycle-free path of size at most.

Proof: We first show how to trim minimal cycles out of
any given sequence. We look for the first occurrence of a re-
peating state. We take out the minimal cycle that begins and
ends with that state and continue this procedure iteratively. For
example, the state sequence in Fig. 4 is made up of two cycles
and one cycle-free path

state sequence

path

Clearly, the remainding path after trimming out the minimal
cycles cannot be larger than the number of the states as it
does not contain the same state twice.

We now analyze a path , associated with a sequence of length
that is composed of two cycles, and , of lengths and
, respectively. A convexity lemma is proved for the regret of

such a sequence.

Lemma 2: The regret of any FS predictor on a sequence,
whose path is composed of two minimal cycles, is less than or
equal to the weighted regret of the two cycles.

Proof: From the linearity in (12) we obtain

The reference performance for is

where equality holds iff the same reference predictor is used for
both cycles. Thus,

and the lemma is proved.

Note that Lemma 2 is true for all loss functions considered
in this paper since the basic requirement is that the optimal ref-
erence performance2 is concave w.r.t. the empirical distribution
of the sequence which is always the case. Clearly, it can also be
generalized to the case where there are more than two cycles.
Another consequence of this lemma is that for deterministic ma-
chines and bounded loss functions, the limit in the definition of
the regret ((2) and (1)) exists and so we can use instead of

. This is due to the fact that for a given sequence length,
the maximal regret will be attained by repeating a specific cycle
and possibly an extra path whose length is less than and so
the regret at different sequence lengths, , will be the same up
to terms of order .

Theorem 1: The LOSC with states achieves an AER
of .

Proof: From Lemma 1, each sequence traversing the
LOSC is composed of cycles on its state graph and possibly
an additional path whose length is at most . By Lemma 2,
in searching for the worst possible sequence for the LOSC,
one should look for the cycle with the greatest expected regret.
Now, the LOSC has cycles of length between adjacent

2Also known as the Bayes envelope.
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states, each generated by the input bits “ ” followed by “ ” (or
vice versa). The expected number of correct predictions made
by the LOSC for each of these cycles is

(13)

Since each of the reference predictors has exactly one correct
prediction in each of these cycles and the cycle length is two, the
expected regret of each cycle is . There are two additional
possible minimal cycles located at the saturated states. Direct
calculation shows that these cycles also yield the same expected
regret of . Clearly, a sequence that repeats one of these cycles
incurs an extra loss that is between and , and
so LOSC .

As noted earlier, the worst case sequence is a repetition of
the worst case cycle (for the LOSC all cycles are the same) and
an extra path whose length is at most . Even if the extra path
inflicts errors, the expected regret is still bounded by

(14)
Thus, the theorem is proved.

While our main intent is to analyze the performance of the
LOSC for fixed , one may ask what is the optimal memory
size for a sequence of length assuming we allow to grow
with . A trivial consequence of the proof of Theorem 1 is that
the number of states should be roughly . This leads to an ex-
pected regret of which is also the optimal convergence rate
achieved by the scheme proposed in [6]. The LOSC achieves
this performance with a much smaller number of states (
compared with ), but it requires to know in advance.

Next we show that the LOSC is actually the optimal TIDFS
predictor.

Theorem 2: There is no -state TIDFS machine that
achieves an AER smaller than with respect to the class of
constant predictors.

Before proving Theorem 2, we make the following defi-
nitions in considering a general (not necessarily a counter)

-state TIDFS predictor. Let

be the prediction probabilities assigned by this predictor at the
th state, sorted according to their values. Define the gap asso-

ciated with the predictor as , i.e., the largest
subinterval (excluding the edges) on the probability axis with
no states in it. The following lemma holds.

Lemma 3: If the AER of a -state TIDFS predictor is less
than , its gap must be greater than .

Proof: A -state TIDFS predictor with an AER less than
must have since otherwise the all-zeros se-

quence will incur an AER that is greater than or equal to .

Similarly, since otherwise the all-ones se-
quence will incur a greater or equal AER. Thus, for this pre-
dictor,

Now, there are consecutive pairs. If Lemma 3 is false, i.e.,
if for all , then , yielding a
contradiction.

We now prove Theorem 2.

Proof: Given a -state TIDFS predictor whose gap
is greater than , we describe how to construct a sequence
yielding an AER greater than or equal to . Clearly, we
should consider only predictors whose gap is greater than ,
since Lemma 3 has already shown that the AER of all other
predictors is at least .

The sequence is constructed as follows.

1) Start at an arbitrary state.

2) Repeat: If the current prediction probability is above the
gap generate the next bit to be “ .” Otherwise, generate a
next bit “ .”

This construction of a ”gap-toggling” sequence will also be
used later in the paper in proving additional lower bounds.

The expected number of correct predictions made by the pre-
dictor for this sequence, denoted , is

(15)

where the first summation corresponds to the states followed by
an incoming bit “ ,” and the second summation corresponds to
the states followed by an incoming bit “ .” We denote the proba-
bilities in the first summation by since, by construction, these
probabilities are beneath the gap. Similarly, we denote the prob-
abilities in the second summation that are above the gap by .
Without loss of generality we assume , and so the ref-
erence predictor will have correct predictions. Rearranging
terms

(16)

By construction, and . Thus,

(17)

The expected regret over this sequence is then

(18)

and so the theorem is proved.

An immediate consequence of Theorem 2 is that the LOSC
described above is optimal up to terms that vanish with the se-
quence length .

Another way to prove Theorem 2 is to consider a reference
predictor that constantly predicts “ ” with a probability whose
value is the center of the gap. For the gap-toggling sequence,
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this predictor predicts the next outcome with a greater proba-
bility than any TIDFS machine, thus inducing a regret which is
at least half the size of the gap, i.e., at least . This implies
that given a gap in the values of the predicting probabilities of
a certain machine, it is possible to ensure a regret with respect
to the reference predictor located at the center of the gap. Since
the considered constant predictor is poorer than the optimal (se-
quence-dependent) predictor, the regret can only be larger. This
technique will serve us in proving the lower bound for the class
of Markov predictors.

C. The Class of Order- Markov Predictors

We now try to find the best -state TIDFS universal predictor
that competes with the class of all order- Markov predictors.

Theorem 3: There exists a universal predictor with states
that achieves an AER of

with respect to the class of order- Markov predictors (where
is a constant and the result is asymptotic in ).

Proof: We construct a predictor by merging LOSCs,
competing with constant predictors, each associated with a
unique Markov state defined by the previous symbols. Sup-
pose we allocate states to each of these LOSCs, and an ad-
ditional states to record the current suffix. In the state dia-
gram of the universal predictor we must choose the states to be
a Cartesian product of these predictors. Thus, we get a predictor
with states, where

(19)

As shown above, each of the LOSCs achieves an AER bounded
by with respect to best constant predictor. Since the total
regret is the weighted average of the constant predictors, the
proof is completed.

We now consider the case where the comparison class is all
FS machines with states. In [6] it was shown that

(20)

where and are the fraction of errors obtained by
the optimal order- Markov predictor and the optimal -state
machine, respectively, tuned to the sequence. Utilizing (20) and
Theorem 3 we derive the following corollary.

Corollary 1: There exists a universal -state predictor
achieving an AER of at most

(21)

with respect to the class of all -state predictors.

Is the predictor proposed in Theorem 3 optimal? Can an adap-
tive predictor, that counts the number each -suffix has ap-
peared and dynamically allocates states accordingly, do better?

We provide a lower bound on the AER for the class of Markov
predictors that has the same asymptotic dependency on .

Theorem 4: No universal -state TIDFS predictor achieves
an AER less than

w.r.t. the class of all order- Markov predictors.

The proof of Theorem 4 uses a nontrivial yet tedious vector
generalization of the gap technique used in the proof of The-
orem 2 and is given in Appendix I.

V. FINITE MEMORY UNIVERSAL CODING AND ESTIMATION

OF INDIVIDUAL SEQUENCES

In prediction with self-information loss the task of the pre-
dictor is to assign at each time instant a probability that the
next outcome is “ .” The associated loss with this assignment
and the resulting outcome is the “code length, ” i.e., in
case the next bit is actually “ ” and in case the next
bit is “ .” This universal prediction problem is essentially the
universal lossless coding problem as by using arithmetic coding
one can turn the probability assigned to the sequence symbols
into a codeword of a suitable length (see [19]). Unlike the prob-
ability assignment carried out by the universal predictor in Sec-
tion IV, whose goal is to deal with a malicious adversary, here
the probability assignment is the principal task. While we em-
phasize the self-information loss, the results and theorems in
this section hold for both the square-error loss function and the
self-information loss unless specified otherwise.

A. Competing With the Class of Constant Predictors—
Candidate Machines

Consider the comparison class of single-state predictors, i.e.,
predictors assigning a constant . The best static predictor
tuned to the sequence predicts the next bit to be “ ” with

, resulting in a reference code length which is
the empirical binary entropy of the sequence. This leads to the
definition of the universal coding redundancy with respect to the
class of constant predictors

(22)

where is the binary empirical entropy of a
sequence.

Shtarkov [21] proposed the optimal universal probability
assignment that attains the minimal , but that solution
turns out to be nonsequential in nature as it needs to know in
advance. Alternatively, one can use the Krichevsky–Trofimov
probability estimates

for all

(see [11]), which are sequential but require unbounded memory.
Both schemes achieve a coding redundancy of ,
where is the length of the sequence. A different scheme that
achieves a vanishing coding redundancy is the Ziv–Lempel
([23]) coding scheme. While this scheme does not explicitly
assign a probability to the next bit, it can be translated to a
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probability assignment scheme as explained in [6]. This scheme
uses unbounded memory as well.

Following the – loss setting, a natural candidate for a
-state machine is the LOSC. It turns out, however, that it

performs poorly in the coding problem. Specifically, the worst
case sequence for the LOSC with uniform assigned probabili-
ties is the sequence that begins with ones and continues
with the infinite sequence . Thus, it will keep
cycling the topmost cycle in its state graph. The average loss
attained by this cycle is

for

On the other hand, the empirical entropy of this sequence
approaches . Thus, the redundancy (regret) grows with .
Modifying the probabilities assigned to the counter states will
not help since the counter does not have a “relaxation” feature,
meaning that a sequence which starts with consecutive ones or
zeros and continues with a balanced sequence will cause the
counter to forever toggle around some probability value that
does not match the sequence’s empirical probability (which is
close to ), resulting in a large coding redundancy.

Another candidate machine is the finite window predictor.
This machine keeps track of the last bits which requires

states. Suppose even that keeping track of the number
of ones in the window can be done with states (this cannot
be done exactly by a -state machine but a machine with ap-
proximately states that approximates this count is
given in [2]). Now, at each instant the finite window will as-
sign the Krichevsky–Trofimov probability estimate, , as-
sociated with the counts within a window of size , where
is the number of ones in the window. The worst case sequence
for this finite window predictor toggles between consecu-
tive ones and consecutive zeros. Its normalized cumulative
self-information loss would be

leading to a normalized code length that approaches
as (and thus ) becomes large. The empirical entropy

of this sequence approaches . Thus, for this sequence, the re-
dundancy of the ideal -window machine does not diminish
with . A similar result applies for the square-error loss or for
any other convex loss function. In general, the finite window
predicts poorly any sequence with “nonstationary” behavior.

The best known TIDFS machine so far was given in [17].
This machine is a counter with “reset,” as shown in Fig. 5. This
machine counts the zeros and ones and uses the Krichevsky–
Trofimov probability estimates for prediction. It resets itself
roughly every steps. As shown in [17], it achieves an
asymptotic coding redundancy of for all sequences. Can
we do better?

B. The “Exponentially Decaying Memory” (EDM) Machine

We now present a novel -state TIDFS machine that out-
performs the “counter with reset” above, and so it is the best

Fig. 5. A counter with reset for K = 6.

machine known so far. The motivation for this machine is to
simulate an exponentially decaying memory over the past data

where , a real number between and , is the probability
assigned by the machine at time . A precise implementation
of a machine with an exponentially decaying memory as above
cannot be done with a finite number of states. Thus, it has to
be approximately simulated by a -state machine, yielding an
additional quantization error. Such a machine, called the expo-
nentially decaying memory (EDM) below, is now described and
analyzed.

The probabilities assigned to the states of the EDM are
based on a nonuniform quantization of the probability axis in
the interval so that the density of states
assigning a probability in the vicinity of is proportional to

(this choice is motivated by Jeffreys’ prior and
follows [17]). Note that assuming that the density of states in
the vicinity of is , the total number of
states will be since is integrable on
(assuming ). Choosing a small will result in fewer
states.

Suppose that at time the machine is at a state with as-
signed probability . Denote

The machine’s next state function is such that will be the
state whose assigned probability is the closest to and is
between and .

Theorem 5: The EDM achieves an asymptotic coding redun-
dancy of with respect to the empirical entropy.

We provide preliminary definitions and show some properties
of the EDM, before proving Theorem 5.



MERON AND FEDER: FINITE-MEMORY UNIVERSAL PREDICTION OF INDIVIDUAL SEQUENCES 1515

Suppose we order the states according to the prediction prob-
abilities they assign. As the machine moves between states, it
may skip over several “state gaps” (for states there are
state gaps). We divide uniformly the loss (code length) obtained
at each step, between the state gaps that were skipped over
during the transition. For example, suppose the current state as-
signs a probability of , the incoming next bit is “ ,” and
suppose that this induces a transition that jumps 10 states up-
wards. The resulting loss (code length) is 2 bits ,
which is divided between the 10 state gaps, so that each is asso-
ciated with a loss of 0.2 bits and a up-step (a code length
is also accumulated at the extreme states). We denote the size of
an -centered state gap by

(see Fig. 6). We assume that all sequences begin and terminate
whence the EDM machine occupies the same state. We later
show that this assumption is not necessary and Theorem 5 is
true for all sequences. By this assumption, the number of times
each state gap is crossed on the way up equals the number of
times it is crossed on the way down.

An -centered state gap has a certain accumulated number of
up-step, , down-steps , and an accumulated code
length . We assume (the proof for

follows similarly) and show the following.

1) Up-steps and down-steps that skip over an -centered
state gap could originate only from states within a
bounded interval.

2) The ratio between the number of up-steps and total steps
that took place over an -centered state gap is close to .

3) The average code length, which is the accumulated loss
divided by the total number of steps, for each of the state
gaps is close to .

Lemma 4: Up-steps that skip over an -centered gap origi-
nate from states in the interval

Proof: Assume is the lowest state enabling the ma-
chine to skip over an -centered state gap. Therefore,

(23)

Note that is a value that lies between states and is a value
of a state. As a result

Similarly (see Fig. 7)

Let where . The
following lemma holds.

Lemma 5:

(24)

Fig. 6. An x-centered state gap.

Fig. 7. An x-centered gap, x and x . The fact that the length of each
up-step is twice the length of each down-step implies that x is in the vicinity of

.

We prove Lemma 5 in Appendix II.
Note that since , Lemma 5

implies that

Lemma 6: The normalized code length for
each state gap obeys

(25)

Proof: By Lemma 4 for

each up-step contributes a code length of at most

Using Lemma 5 and similar calculations for the down-steps we
get

Since , maximizing the code length
is equivalent to maximizing . Thus, the average code
length for each state gap is bounded by

For
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The derivation for the case follows
similar algebraic manipulations and leads to the same results.

Summarizing the above, we can now prove Theorem 5.

Proof: In Lemma 5, we saw that the empirical step ratio in
an -centered gap is close to . Therefore, the optimal average
code length for each state gap is at most

bits away from . In Lemma 6, we saw that the average
code length attributed to each -centered state gap is also close
to . Using the fine quantization approximation for the di-
vergence

(26)

we get that the average code length in each state gap is
away from optimal. The loss per step accumulated

at the extreme states is

We now use similar arguments to those used in Lemma 2 and
show that the redundancy of the entire sequence is bounded by
the redundancy of each -centered gap. The code length ob-
tained by the EDM machine for the entire sequence is the sum
of the code lengths obtained at the different state gaps and at
the extreme states. Using Jensen’s inequality and the concavity
of we get that the code length obtained for the entire se-
quence by the optimal constant predictor is greater than that of
the sum of code lengths obtained by the optimal constant predic-
tors for each gap. Thus, the redundancy for the entire sequence is
upper-bounded by the redundancy of the gaps, i.e., .

To generalize the proof for sequences that do not begin and
end at the same state, we note that the initial state can always
be reached by no more than steps. These steps can inflict
a loss that is bounded by which affects the coding

redundancy by no more than which does not affect
the asymptotic coding redundancy.

When using exponentially decaying memory machines (even
with an unbounded number of states) one would like the expo-
nential decay factor to be as small as possible to enable ac-
curate weighting of a distant past. The resulting loss is propor-
tional to . However, a small decay factor increases the effec-
tive required memory and results in a larger quantization error
when simulated by an FS machine. The error is proportional
to . From this we see that the optimal tradeoff is at-
tained when , as the loss in reducing the effective
memory equals the loss that incurs due to quantization error,
i.e., . This is the optimal loss obtained by the EDM,
as shown in Theorem 5.

C. Lower Bound

In the probabilistic setting there exists a lower bound for our
problem of as a consequence of the lower bound shown
in [12]. Clearly, this bound also applies in the deterministic set-
ting. We now prove a stronger bound of , which demon-
strates that the deterministic setting is fundamentally different

from the probabilistic setting. Note that for unbounded memory
both settings exhibit a behavior.

Theorem 6: Any TIDFS machine whose coding redundancy
for all sequences is less than must have at least
states.

Before we present the formal proof of Theorem 6 we pro-
vide its outline. For a given machine, we construct sequences
called (stands for “threshold sequence— ”), indexed by a
value as follows. If at time the machine is at some
state whose probability assignment is greater (or equal) than
the corresponding value of is “ ”; otherwise its value is
“ .” These sequences have some interesting properties. Each

circles in a cycle of states (after at most steps) since
by its construction the next state depends solely on the current
state. Another property is shown in Lemma 7, asserting that for
a machine whose coding redundancy is less than , the ma-
jority of the states associated with must have probabilities
within of the value . Furthermore, for such a machine
we show that the frequency of ones in the cycle should also be in
the vicinity of , and so the cycle length should be large enough,
typically of the size , to provide the necessary preci-
sion. Following this we consider such sequences, indexed by

uniformly spaced values of . The overlap between the states
of the cycles associated with each sequence is small. The ma-
chine has to deal with all these sequences and so its total number
of states should be at least the size of the union of these cycles,
which is states.

We now prove the following lemma showing the properties
of previously discussed.

Lemma 7: If a TIDFS machine achieves a coding redun-
dancy of then the probabilities associated with at least half
of the states belonging to the sequence are within of .
Furthermore, the empirical probability of is within
of .

Proof: The average code length , attained by a machine
for each , is

(27)

where is the cycle length and and are the
number of zeros and ones in the cycle generated by . By
construction

Clearly, replacing each of the probabilities with would reduce
the code length. The derivative of is larger than in
the interval . Therefore, if half of the probabilities of the
states associated with are more than away from , the
coding redundancy with respect to a constant predictor that al-
ways predicts is larger than , thereby contradicting the as-
sumption on the coding redundancy. This proves the first claim
of the lemma.

As for the second claim, from above the average code
length obtained by the machine for each is larger than

. On the other hand, the code
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length achieved by the optimal constant predictor for that
sequence is . Therefore, the coding redundancy of the
sequence is larger than which, in turn, by Pinsker’s
inequality, is larger than . Since, by assumption, the
coding redundancy is less than we get

(28)

The fact, shown above, that the empirical probability of
is close to implies that its cycle length must be large

enough so that the rational number is in the vicinity of .
This is demonstrated in the following example. Suppose the
machine achieves a coding redundancy of , and consider
a sequence . Its cycle length should be at least ,
since , the set of empirical
probabilities that can be created by cycles of a lesser length
fails to obey (28) as it does not contain any value in the
neighborhood of .

We now consider sequences associated with
uniformly spaced -values in the interval . As noted earlier,
the cycle length of each must be large enough. It turns out,
as shown in Lemma 8, that we can lower-bound , the sum of
the lengths of the cycles associated with all these sequences.

Lemma 8: is at least for any TIDFS whose
coding redundancy is less than .

Proof: Consider a sequence and the set of ra-
tional numbers that are within a distance of . We
denote by the smallest denominator of these rational
numbers. The size of the cycle associated with is at least

, since cycles of a smaller length yield rational empir-
ical probabilities whose denominator is smaller than
and hence are not in .

Clearly, a rational number can be in the set of ’s that
are within of it. Thus, a rational number can be in at
most sets associated with the uniformly spaced . As
the cycle length of is lower-bounded by the smallest de-
nominator of the rational numbers in the set , a lower
bound on , the sum of these cycle lengths, is obtained by
allocating the rational numbers with the smallest possible de-
nominators to as many possible sets . Suppose, indeed,
that we order the rational numbers by their denominator size,
i.e., , and assume that ac-
cording to this order, each is associated with -values.
Clearly, this assignment leads to a lower bound on , the sum
of the cycle lengths. We need at least different rational
numbers to cover the equally spaced ’s. Thus, since there
are rational numbers with denominator we need to use
all the rational numbers up to denominator where

that is, up to .
To get the lower bound on , we use the assignment above,

and note that each rational whose cycle length is corre-
sponds to values of , thereby contributing

Fig. 8. The four-state ISW. Solid/dotted lines are for transtions generated by
“1=0.” Transition probabilities are given for the case i = 2 and incoming bit =
1.

to the sum. As previously noted, there are rational num-
bers in whose denominator is . Combining the above, we
get

(29)

We can now prove Theorem 6, based on the preceding
lemmas.

Proof: The required number of states of a TIDFS machine
whose redundancy is smaller than is lower-bounded by the
number of states in the union of the set of states associated with
all the ’s. By Lemma 7, at most half of the states associated
with different can overlap. Thus, the size of this union is at
least half of . The proof is completed by utilizing Lemma 8
that provided a bound on .

Note that Theorem 6 implies that any TIDFS machine with
states cannot achieve a coding redundancy of less than

.
A universal encoder that competes with the class of order-

Markov encoders is constructed in the same way the universal
predictor was constructed in Theorem 3. This construction will
yield a coding redundancy of

to the order- Markov empirical entropy.

D. Randomized Machines and the ISW

A question that arises is whether an optimal randomized ma-
chine can reduce the regret for the self-information and square-
error loss functions. We now analyze an interesting randomized
FS machine, the ISW, and show that it attains better performance
than the deterministic machines and for the square-error loss it
attains optimal performance.

The ISW, shown in Fig. 8, was previously introduced (see
[20], [17], [12]) as an economic way to simulate the -size
window. It uses states to keep track of the number of
ones in a sliding window of length and works as follows.
Suppose that at time the machine occupies the th state, that
is, it estimates the number of ones in the window of the last

bits to be . If the next bit is “ ,” the machine state should
move up by one or remain at the same state, depending on the
value of the bit observed at time , that should be removed.
However, remembering the last bits requires states. The
ISW approximates this situation and assumes that the removed
bit is “ ” with probability . Thus, it is a randomized machine
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which when it occupies state and the next bit is “ ,” it moves
up to state with probability and remains in the same
state with probability . The probability assigned to the next
bit when the machine occupies state is in the least square
prediction setting and for the universal coding setting.

In [20], it was shown that for Bernouli sources this machine
“simulates” and has many features of a true sliding window. For
example, for a Bernoulli source, the state that the machine
occupies is a binomial random variable, describing the number
of ones in the last experiments. It turns out that the variance of
the probability assignment is about , and the divergence
describing the extra loss when the machine assigns the proba-
bility is

(in fine uniform quantization). Thus, the randomized -state
ISW machine can be used for universal coding (or least square
prediction) of Bernouli sequences, attaining a redundancy of

.
Following this, it is interesting to see whether the ISW will

perform as well for deterministic sequences. At first glance
it seems the ISW will predict poorly since the machine it is
imitating, the finite window, predicts poorly if the sequence
does not have a stationary behavior. Nevertheless, as shown
later, the ISW achieves a least square prediction redundancy
of , which is the same redundancy it incurs in the
probabilistic Bernoulli setting.

We begin the analysis by showing some features of the prob-
ability estimates of the ISW. Recall that the probability assign-
ment associated with the th-state of the ISW is . Let be
the probability assignment given by the ISW at time . For an
ISW with states this random variable can take the values

. Let be the expected value of

By construction of the ISW, if then

Therefore,

Similarly, it can be shown that if , then
. Thus, in general

(30)

implying that the sequence of expected probability assignments
of the ISW is an exponential decaying memory sequence, with
a decaying factor of .

We prove in the Appendix III that the variance of the ISW
probability assignments

(31)

satisfies the recursion

(32)

Lemma 9: There exists depending only on such
that for all binary sequences

Proof: We prove Lemma 9 by induction. Assume that
the property holds for and that without loss of generality

(33)

where . The lemma holds trivially (for )

if

Otherwise, . Since , we
conclude that .

If one could prove that

or equivalently

(34)

then the lemma would follow from (33). To show (34), we use
series expansion
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where (also noting that ). Therefore,

(35)

For (34) to hold we require that

Thus, it is sufficient to require

(36)

This proves the lemma for and we notice that ap-
proaches as goes to infinity.

Theorem 7: The ISW achieves a redundancy of at most
w.r.t. the squared error loss function.

Proof: The normalized cumulative loss for the ISW, de-
noted , is

Since , the extra loss (redun-
dancy) is

(37)

Thus, the redundancy is made up of two terms. The first is the
redundancy of an exponential decaying memory machine with
a decaying factor of . Notice that is real and there is
no quantization error. Therefore, following the derivations made
in the proof of Theorem 5 for exponential decaying memory
machines, it contributes a redundancy of at most . The
second term is bounded by Lemma 9. Specifically

(38)

Thus, the sum of the two terms is and the theorem is
proved.

The preceding discussion reveals an interesting feature of the
ISW. The ISW was originally designed to simulate a fixed finite
window with perfect memory for a bounded interval. However,
it actually has an exponential decaying memory, so that it can
track a changing data behavior and be competitive in predicting
any individual sequence.

To make the ISW suitable for the coding problem one needs
to bound the probabilities away from zero. This can be done
by using the Krichevsky–Trofimov probabilities (for the prob-
ability assignment but not for the transition probabilities) or
by restricting the extreme probability assignments to be and

instead of and .
We now provide an approximated analysis of the average

code length (the normalized cumulative loss)

and the redundancy of the ISW. The analysis is approximate
since we use the expressions for and derived earlier,
while we should have used slightly different expressions asso-
ciated with the Kriechevsky–Trofimov probability assignments,
or the bounded assignments, needed for prediction with log loss

Dividing the different instances into bins according to the cur-
rent expectation and using the fact that the expectation is close
to the empirical ratio of ones and zeros (following the proof of
Theorem 5), we get
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Since the ISW’s expectation has an exponential memory the
redundancy depends on the term

Using the fine quantization approximation for the divergence
would yield a redundancy of . However, this approxima-
tion can no longer be justified since it is not valid for states
whose value is far from . Nevertheless, since we know that
the ISW’s variance is bounded by and the prob-
abilities are bounded away from zero it can be proved that the
term

(the weighted divergence) is bounded by . We need
only to consider probability distributions with one, two, or three
nonzero probability values (yet obeying the variance constraint).
The extreme case is where and both sides of the prob-
ability axis contribute to the divergence. By standard maximiza-
tion it is seen that the extreme distribution is the one where
gets a mass of about and a mass of about is assigned
to the values and . This yields a weighted divergence
of .

We conjecture that by analyzing the higher moments of the
ISW’s probability estimates, it will be shown that the state dis-
tribution is close to binomial. This will enable us to use the fine
quantization approximation to get an redundancy, for the
coding problem.

VI. CONCLUSION AND SUMMARY

The problem of universal prediction of individual sequences
when the universal predictor is constrained to be an FS machine
has been explored. This problem has a clear practical impor-
tance, but it also has important theoretical consequences. In the
case of the – loss function, we have shown that the natural
and heuristic algorithms based on an SC are optimal compared
to the classes of constant predictors and Markov predictors, i.e.,
exhibit the same dependency in , the number of states, as the
lower bounds we proved.

For the self-information loss and deterministic machines, we
have presented a new finite-memory probability assignment al-
gorithm that performs better than the best algorithms known
so far. This machine has effectively an exponentially decaying
memory. We have also presented a new lower bound for the
probability assignment problem with finite memory. We con-
jecture that the lower bound is not tight for this problem and
actually the optimal way to assign probabilities to the next out-
come with finite memory, is by using the exponentially decaying
memory machine.

Using common randomness (needed for the decoder) one
may also consider randomized machines and use the imaginary
sliding window as a coding/estimating machine. We have
proved that this machine achieves a coding redundancy of

and a least square regret of . Note that using
a randomized machine for an individual sequence yields the

same (or almost the same) regret as for probabilistic sequences.
This is not the case for deterministic machines. We conjecture
that this result represents a game-theoretic principle (that holds
under some regularity conditions). “ If a randomized strategy is
used in competing against a malicious opponent, this adversary
cannot gain more then if it has used a random strategy, thus
in effect it is limited.” It will be interesting to identify this
principle in other settings.

Some of the results in this paper were also generalized for
larger alphabets (see [15]). There are still quite a few open
problems for further research whose solution will compliment
the results of this paper. For example, it will be interesting
to find an algorithm for the probability assignment
problem using TIDFS machines, or to show that such an
algorithm does not exist. Another interesting problem is to
solve the general “universal prediction with expert advice,”
i.e., competing with any experts and general loss function,
using a restricted -state predictor. On another level, a very
interesting problem is to find finite-memory twice-universal
predictors, i.e., universal predictors that compete not only with
unknown model parameters but also with an unknown model
class. These problems and other related problems are currently
under investigation.

APPENDIX I
PROOF OF THEOREM 4

Each state will be associated with a
state vector of length of probabilities, denoted by ,
corresponding to the prediction probabilities that the machine
produces when one of the suffixes of length follows
the state . Such a vector is described Fig. 9 for the case

, where . We will describe a
vector of gaps (vector gap), , of dimension , where each
coordinate of this vector is a subinterval of so that each
of the states has at least one state vector coordinate outside
the coordinates (see Fig. 10). We then consider the reference
Markov predictor whose assigned probability at each Markov
state is located at the subinterval center of the corresponding
state of .

We now show that with the above prescribed feature in-
deed exists. We divide the interval into equal in-

tervals of length . The set is made up of all possible
vectors (of dimension ) whose coordinates are the subinter-
vals described above and thus its cardinality is .
Since each state vector can only account for one possible
vector in the sense that , , there
is a least one with the desired feature (here we assume

; otherwise, replace with and
the same results hold).

As noted above, we consider a reference Markov predictor
whose prediction probabilities are located at the center of
the coordinates of . This will guarantee that at each time in-
stant we can reach in steps a state for which the prediction
probability assigned by the machine and the pre-
diction probability assigned by the reference Markov predictor

differ by at least . We refer to this -step
path as “malicious suffix” and denote the sequence of bits that
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Fig. 9. A state diagram corresponding to the state vector �S = h0:2; 0:6; 0:5; 0:9i.

Fig. 10. A vector of gaps for L = 2. Each state vector has at least one coordinate outside the vector of gaps.

generate it by . This means that if the predic-
tion probability of the machine is below (or above) that of the
reference Markov predictor, an incoming bit “ ” (or “ ”) will
yield a relative loss (or regret) of at least . How-
ever, it seems that we cannot be certain what will be the relative
performance of the two machines (the given machine and the
reference Markov predictor) on the -step path. Nevertheless,
it turns out that we can design an algorithm, shown in Fig. 11,
that will guarantee an amortized loss for each step.

The algorithm works as follows. At each time instant it checks
whether the difference between the prediction probability and
the reference probability is above a certain threshold (that de-
pends on the iteration index, ). If we are below the threshold,
we move to the next bit of the “malicious suffix” as we are at the
limits of the required loss. However, if it is above the threshold,
we must introduce a loss and we choose the next bit accordingly.
The algorithm stops when either it reached the end of the “ma-
licious suffix” (after at most steps), or after it accumulated
enough loss.

Assume that the algorithm initializes at where
. Then, the regret is bounded by

(39)

(40)

and the theorem is proved.

Corollary 2: No universal TIDFS predictor with K states
achieves an AER less than w.r.t. the class of all -state

machines.

Fig. 11. The loss distributing algorithm.

Proof: Since Markov predictors of order are a special
case of machines with states, this is a trivial consequence of
Theorem 4.
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APPENDIX II
PROOF OF LEMMA 5

Since, according to Lemma 4, each up-step starts from a
bounded interval, we can bound the length of each of these
up-steps by

(41)

where is half the state gap and is proportional to

by construction. The right-hand side term corre-
sponds to up-steps that originate from and the left-hand
side terms correspond to up-steps that originate from . By
using series expansion and neglecting nondominant terms we
get

(42)

In a similar fashion, one can bound the length of the down-steps
(see (43) at the bottom of the page). Since each state gap has
been traversed an equal amount of times on the way up and on
the way down, the ratio between the number of up-steps and
down-steps can be converted to a ratio of the length of the steps.
Thus,

which, by using (42), (43), and series expansion can be bounded
by

where

(44)

(45)

and thus (multiplying denominator and numerator by )

which proves the lemma.

APPENDIX III
A RECURSIVE FORMULA FOR THE VARIANCE OF THE ISW

PROBABILITY ASSIGNMENT

We prove (31)

In the proof, we assume although the same can be
proved for .

Proof: We first show that the second moment obeys the
recursive function

Using the recursive function for the expectation (30)

we get for the variance

(43)
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Rearranging terms
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